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Abstract

Out of the vast ®eld of microstructural mechanical behaviour of solids, we choose the area of elastoplasticity of

crystalline solids. It is emphasized that elastoplastic deformation proceeds through defects in the ordered crystalline

structure. Most important, at least in our investigation, are the defects dislocations that produce plasticity by motion at

all temperatures and, in addition, point defects that become active at a higher temperature. It is shown that for two

reasons, the elastoplasticity of crystalline solids does not ®t well into the scheme of continuum mechanics: (i) The

conventional tensor of dislocation density counts only excess dislocations of one sign, whereas the observed hardening

and softening is due to the dislocations of two signs. (ii) The motion of the typical defects in the crystalline structure

destroys the particles that constitute the body whose particles, therefore, do not persist during the elastoplastic motion.

For this reason, the elastoplastic crystalline solid is not a di�erentiable material manifold.

During the elastoplastic deformation, an irregular, often densifying dislocation network develops that can be seen in

the electromicroscope and therefore is characteristic for the internal mechanical state. The network can be described by

the in®nite set on n-point correlation functions of dislocations. It is proposed that solutions are classi®ed as of ®rst,

second, third, etc. order according to the highest order of correlation function which is included. The ®rst-order theory

is the so-called mean ®eld theory, a well-known concept within the statistical physics. The two-point autocorrelation

function gives the often used total length of dislocations in a unit volume, also a state quantity.

The present state of the theory, in particular of the dynamics, is still rather underdeveloped. Ó 2001 Published by

Elsevier Science Ltd.
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1. Introduction

In this article, we are concerned with the mechanics of solid media with microstructure, i.e. with mi-
crostructure mechanics. In the last decades, the investigation of such media has increased extraordinarily.
This is not astonishing if one bears in mind that almost all (solid) matter possesses a microstructure and
that the behaviour of such materials depends strongly on this structure, (Kunin, 1982; Capriz, 1989). The
work (Capriz, 1989) contains a valuable classi®cation of the various types of microstructure, according to
the form of the order parameter, or of similar quantities, which are needed to classify the microstructure
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considered. Of interest are the structures on all possible length scales from atomic scale (e.g. crystals) to
macroscopic scale (e.g. concrete or certain plastics).

The ®eld of microstructure mechanics is atmost complex. This means that in an article of this size and
character many topics cannot be discussed even though they might be very important in certain situations.
So I shall be very brief on the thermodynamical aspects and even restrain from a deeper discussion of the
dynamics.

A large part of the microstructured media can be described as ordered, however, with defects in this
order. Then, ordinarily, the objects of interest are the defects since they, in a sense, bring the material to life.
Therefore, a large part of research on materials with microstructure is concerned with the study of defects in
ordered structures.

The term, or the object, ``defect'' has a meaning only in relation to the order prevailing in the considered
solid. Once a speci®c order is de®ned, we can explain deviations from this order as defects. Most convenient
for an explanation of such a situation is the example of crystalline matter, a structure particularly often
found with metallic materials.

Mathematically, the most simple type of crystal, which we call point crystal, can be de®ned by requiring
that at each material point (atom), three nonplanar vectors �e1; e2; e3� can be drawn which point to the next
neighbour atoms in such a way that the vectors ei �i � 1; 2; 3� are Euclidean parallel in the whole specimen.
The ei play the role of the order parameter in the crystalline structure. By using experimental tools,
e.g. electron microscopes, one can ®nd local deviations from the Euclidean parallelism, and can then
identify them in our case (point crystal) as defects named dislocations (line defects) or as point defects such
as interstitials or vacancies or shear faults.

Besides the line and point defects, there also exist surface defects whose classi®cation is not yet ®nal.
Twin and grain boundaries belong to this group.

In order to classify the defects in otherwise ordered structures it is necessary to distinguish between
elementary and composed defects. This is a requirement similar as it is known from the theory of ele-
mentary particles. By this requirement, the number of di�erent elementary defects (or particles) becomes
®nite, usually small.

In the crystals described so far, the particles are atoms, taken as material points. There also do exist the
so-called molecular crystals, e.g. where the particles are extended to little rods (one may also think of more
complex particles). Of course, in these cases, the order parameter, which was �e1; e2; e3� in atomic crystals is
di�erent now, and therefore, the defects also become di�erent. The most prominent defect in rod crystals (in
crystals where the particles are rods) is the dislination (a line defect), also called spin disclination to dis-
tinguish it from orbit disclinations which are defects in other structures, e.g. in atomic crystals. The orbit
disclinations, however, are not elementary defects ± they rather correspond to certain superpositions of
dislocations. We mention in passing that the molecules of liquid crystals are often rod-like. Therefore, spin
disclinations occur in liquid crystals, where they are elementary defects. In this article, however, we shall
restrict ourselves to materials having a crystalline structure with point particles. Metals are the outstanding
representatives of this group.

We have mentioned that it is the defects which bring life into ordered structures. The best example is
again the dislocation, whose movement implies local plastic deformation at the momentaneous position of
the dislocation. This is the reason why the connection between plastic ¯ow and dislocation motion has been
studied since the appearance in science of the dislocation in the year 1934. At that time, there was great
hope that a future theory of dislocations could be ranged in the extremely successful continuum mechanics
with its whole wealth of applications. This hope has been ful®lled only partially, and this will be a main
point of this exposition.

All matter which we use in our daily life is built up from atoms or molecules. In many cases, their
structure is crystalline, i.e. ordered, in others amorphous, i.e. disordered and in others, partially ordered (or
partially disordered). The properties of these various groups of materials are very di�erent, and to explain
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this in detail is an important aspect of material science. In this paper, we shall not try to solve this problem
but rather restrict ourselves to the ®eld of plasticity, or better elastoplasticity, thereby emphasizing some
principal features of such a theory. Going from simpler to more complex situations, we start in Section 2
with a brief remembrance of the classical theory of ideal plasticity as was developed in the last century. This
theory neglects all e�ects of elasticity, with the consequence that the internal state of the trial body remains
unchanged during the deformation. This means in particular that the body does not harden nor soften
during the deformation.

In Section 3, we allow for elastic e�ects in a way which is suggested by the picture of continuum me-
chanics. We shall see that in this scenario, we have to allow for the incompatibility of both elastic and
plastic parts of the deformation. In this theory where we are concerned essentially with the internal me-
chanical state, we do not speak of dislocations or other defects as yet. This means that we omit an im-
portant part of the phenomenon elastoplasticity.

In Section 4, we combine elastic and plastic deformation to give the total elastoplastic deformation. The
composition is multiplicative in the nonlinear theory, but becomes additive in the linearized theory.

Section 5 essentially contains the elementary, linearized continuum theory of dislocations. Here it is shown
that this theory is incomplete since the traditional tensor of the dislocation density, that appears here for the
®rst time, contains dislocations of only one sign (plus or minus). This is a serious handicap to the theory.

Another handicap is described in Section 6. Here it is shown that, due to the dislocation motion, the
structure of the solid su�ers an internal renting to pieces. This implies that the crystal is not a (di�eren-
tiable) material manifold.

The strong statistical components of the dislocation structure suggest a way out from this dilemma. This
is to consider elastoplasticity as a problem of statistical physics. The dislocations are described in Section 7
as random functions of position (and perhaps time). All tools of statistical physics are now available. In
Section 8, we show in particular that the dislocation correlation functions are helpful to describe the dis-
location state. They enable one to proceed systematically to better approximations by including higher
order correlations. First approximation is a mean ®eld theory which is close to the elementary theory
described in Section 5.

In Section 9, we illustrate that the greatest di�culty when developing a realistic theory of elastoplasticity
is the complexity of the internal mechanical state. This is a problem completely absent, for instance, in the
conventional elasticity or ideal plasticity theory. The problem with the internal mechanical state is closely
connected with the response problem treated in Section 10. A crystalline solid with dislocations is no longer
in the state of the ideal crystal. We shall argue in Section 5 that dislocations cannot approach each other
closer than perhaps 20 �A, and this means that the largest volume part of the specimen will remain crys-
talline under the deformation, whereas dislocations occupy an only small part of the volume. But where the
dislocations are, there is no longer a crystalline state, as the mutual relative positions of the atoms are
principally di�erent there. This clearly implies an elevated energy and, as a consequence hereof, a speci®c
response to the presence of dislocations. It is argued that this response has the dimension of a moment
stress.

In Section 11, we make some remarks on the problems that are very important for elastoplasticity, but
were nevertheless omitted in this article that was not supposed to become a book. Topics here are the
appearance of point defects and their integration into the general (®eld) theory, the gauge theories of defects
which recently have gained some popularity, though they have not led to a breakthrough so far, the fre-
quently observed development of dislocation patterns on a mesoscale and ®nally the ®eld theoretical for-
mulation of the theory in terms of a�ne di�erential geometry. Behind the latter stands an imposing
mathematical formalism which in full generality takes care of all (the many) nonlinearities in our ®eld.

One last word on the practiced mode of citation. We consider all quoted works as basic contributions to
our ®eld of investigation. I know that nevertheless my list is rather fragmentary, and I apologize to those
who had deserved to be quoted and are not.
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2. Ideal plasticity

The object of ideal plasticity (e.g. Geiringer, 1973) is a completely structureless medium, something that
does not exist in reality. Its properties are the same at all points and times. In other words, such a body is
homogeneous on all length and time scales. As far as mechanics is concerned, to which we limit ourselves,
such a medium satis®es the equations

q
dv

dt
ÿ divr � F �equations of motion�; �1�

qdivv� dq
dt
� 0 �equation of continuity�: �2�

Here q is the (scalar) matter density, v, the velocity (vector) ®eld, r, the stress (tensor) ®eld, F, the external
force per unit volumes, q; vi; rij are 10 ®elds that determine the dynamical state of our medium. Eqs. (1) and
(2) comprise four equations, so that we need six further equations for the determination of q; vi; rij. These
equations must specify the particular physical situation of the medium. The situation is that of ideal
plasticity and consists of two parts. The ®rst part has ®ve equations

1

2

ovi

oxj

�
� ovj

oxi

�
� ksij �kP 0�; �3�

which form the plastic ¯ow law of de St. Venant and L�evy (1870) and von Mises (1913).
The second part is the scalar equation:

sijsij � 2k2; sij � deviator�rij�; �4�
and this is von Mises' (1913) law of yield limit. It implies that yielding sets in when the stress has reached a
certain limit which is determined by the constant k. An extension of the theory would be that k and k
depend on the position in our medium. Obviously, Eq. (3) is Newton's law of viscosity, whereas Eq. (4) is
the typical law of a plastic body. Hence, a material obeying Eqs. (1)±(4) could also be classi®ed as (ideally?)
viscoplastic. Eq. (3) implies that this ¯ow is volume conserving. It may be expected that the laws charac-
terizing viscosity and plasticity like those in Eqs. (3) and (4) should also ¯ow into more complex theories of
plasticity or viscoplasticity. This is the main reason why we have this section.

The laws of ideal plasticity and simple extensions thereof have been applied a lot in theory and practice,
sometimes with considerable success. However, real materials show the phenomena of strength, hardening
and softening which lead to a change of the internal mechanical state of the body. It is obvious that such a
behaviour cannot be described by the Eqs. (1)±(4). Since the named phenomena are at the root of our
understanding of the notion of plasticity, our aim must be to develop a plasticity theory of real bodies, and
this means to study strength, hardening and softening as well as their basic sources. In many cases, such
research has shown that the basic sources are the defects, in particular the dislocations, so that their study
appears to be unavoidable. It is helpful, however, to postpone this study a bit and ®rst to see what happens
when we extend the ideal plasticity to a plasticity combined with elasticity. We shall then speak of elas-
toplasticity.

3. Mathematical theory of internal stress

Now, the role of the internal mechanical state is fundamental. This is the state of self-stresses (eigen-
stresses) in which the stress sources are internal to the body, in contrast to what we have in more con-
ventional applications of elasticity theory, where the stress sources are volume and surface densities of the
external forces.
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To ®nd out more about the internal stress sources consider the medium at rest, i.e. the static situation.
Let us compare the scenarios with external and internal stress sources. The theory with external stress
sources is the conventional elasticity theory which in linear approximation obeys the equations of equi-
librium

@irij � ÿFj �divr � ÿF�; �5�
compatibility

�ikm�jln@k@lemn � 0 �inc e � 0�; �6�
and the stress±strain law

rij � cijklekl �r � ce�: �7�
Eqs. (5)±(7) is the linearized form of the laws of (static) elasticity theory, where we have omitted the surface
equations for simplicity. Note that at this stage of development of the theory many essential points arise
already from the linearized theory. It is a minor task to write down Eqs. (5)±(7) also in the frame of the
nonlinear theory.

In Eq. (6), emn is the elastic strain tensor, and ``inc'' (read ``incompatibility of '') is the tensor operator of
incompatibility, de®ned by

�inc�ijmn � �ikm�jln@k@l; �8�
so that inc � 0 means compatibility. cijkl is the, in general anisotropic, material tensor of the linearized
elasticity theory.

The external volume force Fj in Eq. (5) is mostly given in the statement of the problem. In particular it
can be equal to zero. If in this case, we require that instead of obeying the compatibility law the elastic
strain tensor is incompatible, we arrive at the equations of equilibrium

@irij � 0 �divr � 0�; �9�
incompatibility

�ikm�jln@k@l�mn � gij �inc e � g�; �10�
and the stress±strain law which conveniently is formulated in the inverse form

eij � sijklrkl �e � sr�: �11�
Obviously, the Eqs. (9)±(11) permit stresses when the ``incompatibility tensor'' g is nonzero. Since

div inc � 0; �12�
we can satisfy Eq. (9) by

r � incv; �13�
so that e � s incv and

inc s incv � g: �14�
This equation is brought into a more convenient form by introducing the auxiliary tensor v0 through
(Kr�oner, 1954)

vij � 2l v0ij
�
� m

1ÿ m
v0kkdij

�
; �15�
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with inverse

v0ij �
1

2l
vij

�
ÿ m

1� 2m
vkkdij

�
; �16�

where l and m are shear modulus and Poisson's ratio. Of course, Eqs. (15) and (16) are useful for isotropic
elasticity only.

In view of Eqs. (15) and (16) one ®nds that Eqs. (9)±(11) are satis®ed by the solutions of the equations
(Kr�oner, 1954)

r4v0 � g; divv0 � 0: �17�
In possession of v0, the stress follows easily from Eqs. (15) and (13).

The equations of this section are useful when the stresses due to a given ``dislocation distribution'' are to
be calculated. The connection to dislocation theory is given by the equation

g � ÿ�a�r�sym; �18�
where ``sym'' denotes symmetrization and a is the tensor of dislocation density as introduced in Section 5.
So, the presence of dislocations implies incompatibility.

4. Elastoplasticity ± preliminary thoughts

We now show that the basic Equations (9)±(11) of the internal stress state are well prepared to adapt
plastic deformation into the theory. For this task we need a deeper understanding of the concept of in-
compatibility. To achieve this, we divide, in a thought experiment, the medium into its little volume ele-
ments which ®rst might be ®nite, but then become in®nitesimal under a suitable limiting process. Imagine
that we cut the medium along all boundaries between adjacent volume elements. We now give to every
volume element some plastic deformation in such a way that in the mentioned limiting process a continuous
plastic strain, say ep

ij, arises. It is possible that after the performance of this process the volume elements
®t together perfectly. This is the case when the macroscopic function of plastic strain is compatible, i.e.
satis®es

inc ep � 0: �19�
In fact, in this case the strain ep can be derived from a plastic displacement ®eld; therefore, it is a compatible
strain ®eld. That is so in the situation of ideal plasticity. In general, however, ep can be any function, so that
ep will, in general, be an incompatible strain. This case occurs in reality when we perform plastic defor-
mation on the body. Now, the real deformations of interest are those which leave the body intact, i.e. lead
from one compact state to another compact state. For a medium that is capable of elastic and plastic
deformation, the condition that the body remains compact under the action of elastic and plastic defor-
mation is that their incompatibilities are equal but of opposite sign, so that they cancel for the sum ee � ep.
Thus, the condition that the body remains compact in the combined elastoplastic deformation reads

inc ee � ÿinc ep; �20�
where we now use ee for ``elastic strain''. Also, this equation can easily be transformed into the nonlinear
form.

Eq. (20) is necessary but not su�cient for the purpose, what we can see as follows: De®ne total, elastic
and plastic deformation gradients by

dxk � F k
K dX K ; dxk � F ek

j dxj; dxj � F pj
K dX K : �21�
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In Eq. (21), X K are the material coordinates, xk the space coordinates and dxk are the anholonomic co-
ordinate di�erentials of a ®ctive intermediate state which would arise if, as discussed above, a pure plastic
deformation would be applied to the initial state.

Obviously,

F k
K � F ek

j F pj
K : �22�

e and p denote, as before, ``elastic'' and ``plastic''. Eq. (22) is the rule showing how the total deformation
gradient decomposes into elastic and plastic part. If we linearize Eq. (22) by introducing the, now in®ni-
tesimal, distortion tensor

bk
K � F k

K ÿ dk
K ; �23�

then Eq. (22) becomes

bk
K � bek

K � bpk
K : �24�

Thus, the decomposition of the (total) deformation into elastic and plastic part is multiplicative in the
nonlinear case, but reduces to an additive law in the linear form. We use the term ``distortion'' rather than
``displacement gradient'', because the b's are gradients only if the corresponding deformations are com-
patible. The case of interest is that elastic and plastic distortions are incompatible, whereas the total dis-
tortion is compatible. This is so because we assume that during the elastoplastic deformation, the body is
not torn into pieces, i.e. remains compact. We may now write bij � @iuj with uj the total displacement ®eld,
but corresponding equations do not exist for be

ij and bp
ij. This implies that the forms with F ek

k and F pk
K in Eq.

(21) are, in general, Pfa�an forms.
For simplicity, our arguments were partly based on the linearized theory of elasticity. They can also be

used analogously in the frame of the nonlinear theory, which, however, is much more complex.
In the preceding text, we have sketched a continuous medium that can undergo deformations composed

from elastic and plastic parts. These deformations connect compact states of the medium and can be de-
scribed in terms of a displacement ®eld. Allowing now also for motion, we identify a body, say B, with a
three-dimensional material manifold whose motions are families of time-dependent di�eomorphisms v of B
into the Euclidean space E3.

A consequence of these statements is that

x � v�X ; t�; �25�
where x denotes the position in E3 of the particle labelled by X in some reference con®guration which we
may choose as stress-free. The existence of Eq. (25) with di�erentiable v, which is called ``motion'', implies
that we have sketched a theory which ®ts into the conventional continuum mechanics. We shall come back
to Eq. (25) in Section 6.

5. Dislocations ± elementary approach

The result that the total distortion b must derive from a displacement ®eld can also be written as

curlb � 0; �26�
or, with Eq. (24)

curlbe � ÿcurlbp; �27�
which, of course, is related to Eq. (20).
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Now, consider the surface integralZ
S

dS � curlbp �
I

C
dx � bp �

I
C

db � bC; �28�

over a surface S inside the medium, where S is bounded by the circuit C. A part of Eq. (28) can be rewritten
as Z

S
dS � a � bC; a � curlbp: �29�

It is suggestive to interpret a, which obviously describes a line density, as the tensor of dislocation density,
because the line integrals in Eq. (28) are Burgers circuits as used to de®ne the Burgers vector in the ele-
mentary dislocation theory (Burgers, 1939a,b). There is one Burgers vector for each circuit C, namely bC.
This is a measure of the number of dislocations piercing through the surface S. Incidentally, this number is
the same for all surfaces S that have the same circuit C as boundary. Note that diva � 0 from the de®nition
(29) of a. Of course,

curlbp � a �definition�; �30�
curlbe � ÿ a �law�; �31�

where the sign is conventional.
Eq. (31) is the law that ensures that the body does not break into pieces under the action of the elas-

toplastic deformation. It contains how the elastic distortion must develop to keep the body compact.
Eq. (31) appears as a relatively easily handleable di�erential equation with a well understandable

meaning.
However, the situation is by far more complex than it appears here. The point is that only the resulting

Burgers vector is measured by Eq. (29), see e.g. (Kroupa (1964)). This means that the positive and negative
dislocations cancel to a large degree. For instance, the resulting Burgers vector turns out to be as zero, if an
equal number of positive and negative dislocations pierce through S even if this number is very large. This is
not at all an academic situation, but occurs frequently in practice. A prominent example is simple tension,
where for reasons of symmetry equal numbers of positive and negative dislocations are produced, so that
bC � 0 for each C. Nevertheless, experience shows that many materials harden or soften strongly under
simple tension, which means that the internal mechanical state changes inspite of the absence of a mac-
roscopic dislocation density a. In other cases, e.g. bending and torsion, excess dislocations of one sign are
produced, but their number is usually so small that the change of state from them is much less than that due
to the simultaneously produced dislocations of both signs.

If we now argue in terms of dislocations, then we should be aware that dislocations do not form nice line
densities, as for instance electrons in conductors do, but rather they form multiply interconnected networks.
This is in agreement with our former ®ndings that dislocations occur in roughly equal numbers of both
signs.

In the undeformed crystal, one normally sees a quite loose dislocation network that densi®es (sometimes
looses) strongly during the deformation. It is of great signi®cance that there is an upper limit to the density
of dislocations. In fact, when dislocations of opposite signs approach each other below a critical distance,
then they suddenly hasten onto each other and annihilate. The critical distance, say dcr, is somewhat dif-
ferent for screw and edge dislocations, 20 atomic distances might be of a typical value (Di�ert and Ess-
mann, 1993; Essmann and Di�ert, 1996). Note that this distance is very small on the macroscopic scale.

There are two limiting cases in this respect. The mean diameter of the Burgers circuit C which we use to
detect the dislocations (i) is (much) smaller than the critical distance dcr, or (ii) it is (much) larger than the
critical distance dcr.
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Both cases are up to our convenience. That means they are legitimate for the corresponding experiments.
Let us ®rst discuss case (i). Of course, the Burgers circuit of such a smallness will surround either none or
one dislocation. With the help of many small Burgers vectors we can then measure the course of all dis-
locations, and these will occur as separate lines that form an interconnected network. A dislocation which
passes through a point x in the direction given by the unit vector t�x� is then described by the dyadic t�x�b.
Here, b does not depend on the position, because b is always constant along a dislocation line. Note that
there can exist in a crystal several di�erent Burgers vectors, all however connected with the lattice structure.
Therefore, the number of Burgers vector types is always small and can often be taken into account by
simple addition. In the following, we assume that there exists only one type of Burgers vector in our
medium.

In our present case, description by single lines, we do not have a dislocation density but single (separate)
dislocations characterized by t�x�b. Formally, however, we can introduce a dislocation density also in the
case of single dislocations. This density has the form

a�x� � t�x�bd�q�: �32�
Here d�q� is a delta function which is in®nite along the course of all dislocation lines and zero otherwise. q is
the shortest distance of a point from the dislocation line L.

Eq. (32) leads to the correct Burgers vector of a dislocation piercing through a small area s perpendicular
to the dislocation line. In fact, the integration over s givesZ

ail dSi �
Z

tibld�q�ti dS � bl; �33�

where
R

d �q�dS � 1 has been used.
Dislocation densities of the just considered type are frequently used in model calculations where one is

concerned with the problems of separate dislocations, in particular calculations of stress and strain. Of
interest are singular dislocations, two, three or more single dislocations and their interaction, often straight,
sometimes circular and other dislocations.

As mentioned (case ii), to measure the Burgers vectors, we can choose the circuits C also large. We then
measure excess dislocations of one sign per circuit C. This means that we get a dislocation density �a that is
the average of the microscopic density a considered so far. Whereas the microdensity describes the dislo-
cation exactly, the macrodensity does not. It is simpler instead.

In the problems of type (i), the dislocation distribution is given, e.g. by the model. This is, of course, not
the general problem of elastoplasticity, where we want to calculate elastic and plastic strain, dislocation
distribution, stress, hardening etc. Nevertheless, it is very useful to be able to calculate the stress and strain
distribution due to a given dislocation arrangement. The given distribution of dislocations makes the
problem deterministic, whereas the problem of given external forces rather than given dislocations belongs
to the statistical physics. This is so because the dislocation network developing under these conditions is a
random network.

6. Di�erentiable material manifold ± a nonappropriate picture

The ®ndings of the last section imply that the Eqs. (26)±(29) give an only incomplete picture of the
geometry, or kinematics, of dislocations, and this insofar as these equations do not describe su�ciently the
internal mechanical state. In fact, only excess dislocations of one sign are included into Eq. (29), and we
know that this state is described essentially by the positive and negative dislocations together. There is
another circumstance which lets us suspect that not everything is in order with the theory of Section 5.
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In Section 4, we have recalled that in continuum mechanics the motion v of a particle, labelled by X in
some reference state can be written as

x � v�X ; t�: �34�
This equation gives us the trajectories of the particles during their motion. This motion can be described as
a change of placement, i.e. a displacement, which depends on position and time. The existence of the
function v is in accordance with Eq. (26) which implies the existence of a displacement ®eld, say u, as a
solution of Eq. (26):

b � gradu: �35�
We now argue that this equation, and together with it, also Eq. (34) cannot strictly describe the plastic

deformation by dislocations. As a consequence, plastic deformation does not ®t too well into continuum
mechanics.

This problem was ®rst investigated independently by Anthony (1993) and Kunin (1990) with practically
identical results. The arguments are as follows:

Relation Eq. (34) implies that the body is built up from particles speci®ed by X . It is tacitly or expressis
verbis assumed that these particles persist during the whole motion of the body. Just this assumption is
invalid for the plastic deformation of crystalline bodies. Firstly, consider the choice that the particles X are
identi®ed with the atoms (or molecules) of the lattice. Now, to a large extent, the plastic deformation
proceeds through the motion of groups of dislocations along the lattice planes. On its path, each dislocation
causes a relative shift of the neighbouring atoms by one lattice distance. Since as a rule, groups of 20 or
more dislocations pass along one glide plane, originally neighbouring atoms are separated through the
dislocation motion by many atomic distances. This means that the motion of the atoms during plastic
deformation is extremely discontinuous and in this picture not treatable in a continuum theory. Anthony
et al. (1998) and Anthony and Azirhi (1998), speak of an ``internal tearing'', a rather vivid picture.

The only alternative I can think of is to declare in®nitesimal volume elements as the particles of our
body. This is in more accordance with the continuum picture. However, now the dislocations will pass
through these new particles thereby destroying them such that a volume element in some current state
cannot be identi®ed materially with a volume element of any previous state. This means that there are no
trajectories v that describe the motion of particles along any path, because such identi®able particles do not
exist. Hence, the basic Eq. (34) together with Eq. (26) breaks down, and there is no continuum theory of
elastoplasticity in the strict sense.

These ®ndings are rather unfortunate because continuum mechanics is well developed and easy to
handle. So one might ask oneself how big the error is when Eq. (34) or Eq. (26) are used inspite of their
strict invalidity. There is some hope that this error is not too large since the separation of atoms resulting
from the gliding of groups of dislocation is very small on the macroscopic scale, which is the scale of interest
in many applications. In fact, 100 atomic distances which might be an upper limit for this e�ect is quite
small on the macroscale. The ¯uctuations that arise from this e�ect are usually not mentioned, but they
cause an uncertainty that is di�cult to estimate. After accepting such a procedure Eq. (34) should be in-
terpreted in a statistical sense: v would then be an average motion rather than a deterministic motion.
Unfortunately, the statistical basis for this averaging is not very well de®ned.

7. Dislocation statistics

As is well known, the dislocation network under plastic deformation is very irregular, in fact random in
the sense of probability theory. In the theory of Section 5, we had prescribed the course of all dislocations
and from there calculated everything in a deterministic way. We now recognize that the former theory
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should be interpreted as the deterministic microscopic theory which underlies the macroscopic statistical
theory.

Within the frame of the statistical theory the dislocations, as other variables like stress, elastic and plastic
strain, become random variables. We write t�x�b for the value of the dislocation at point x where, as
mentioned before, the dimensionless vector t�x� gives the line direction at x, and b the constant Burgers
vector. For the following investigation it is convenient to use t�x�b as a measure of dislocation rather than
to use the density t�x�bd�q�.

Except for very simple dislocation con®gurations, e.g. a few straight dislocation lines, it will be di�cult
to calculate stress and strain, given t�x�b, as functions of position in a deterministic theory. In fact, we deal
here with a many-defect problem comparable in complexity with the many-body problem of solid state or
particle physics. For this, special methods have been developed in statistical physics. In the following, we
show how such methods can also be applied to our dislocation problem. We do this again by the example of
the statistical theory.

Basic random objects in the physical particle theory are for instance the electrons which often distribute
themselves over random positions in the solid. In our many-defect problems with dislocations the objects
are described by t�x�b, and are also distributed at random in the body. There is a constraint that must be
observed later in the practical calculations, namely the constraint that dislocations do not end in the in-
terior of the body, but rather are nonending lines (therefore diva � 0). Since we are up to a statistical
theory, we use the ensemble picture. Hence, we do not look at a single specimen, but study the behaviour of
an ensemble consisting of many, many repetitions of the original (real) system. We perform the same ex-
perimental test on all these repetitions and use the results to say something about the average behaviour of
the ensemble.

The basic experimental test consists in the measurement of t�x�b at a point x in each member of the
ensemble, such that x is a common point for each member, i.e. the coordinates of x remain the same when
going from one member to the next. Having done that with point x, which we now also call x1, we do the
same with points x2; x3, etc. Often, however, it will not be necessary to do this with more than one point,
namely, when we know that the specimen is statistically (or macroscopically) homogeneous. In that case,
we expect the same result in the following average procedure which gives us the ensemble average htbi over
the numerical results of the measurements at the various members of the ensemble.

To arrive at a manageable statistical theory it is necessary to assume the validity of an ergodic hypothesis
which in our case (statics) states that the volume average of a random function equals the ensemble average
of the same function. In mathematical language,

�f �x� � 1

DV

Z
DV

f �x�dV ; hf �x�i � lim
N!1

X
N

f �x�: �36�

�volume average� �ensemble average�

Here f �x� is the basic random function, DV is the representative, or macroscopic, volume element which is
in®nitesimal on the macroscale, but very large on the microscale. N is the number of members in the
statistical ensemble on which the test measurements are performed.

The literature on statistical physics is full of discussions of the ergodic hypothesis so that we can re-
nounce a longer exposition on this subject. Qualitatively, the following statement is valid: physical systems
obey the ergodic hypothesis when the situation is su�ciently random. That means for instance that we
cannot expect an ergodic situation when the disorder in the systems consists of small deviations from order,
e.g. if we have a chessboard pattern with slight disturbances.

We shall now try to become more acquainted with the ergodic theory by considering some examples. The
random function is represented by the numerical values at the points in the members of the ensemble,
i.e. by the values of the dislocation tensors t�x�b. For simplicity we consider only one Burgers vector b,
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which is constant in our dislocation network. That means the random variable proper is t�x�. In the mi-
croscopic picture t will vary widely from point to point. In particular, t may also equal zero. Note that t�x�b
is not a dislocation density but gives the numerical values of the dislocations themselves at the points x.

Taking the ensemble average of t�x�b as de®ned in Eq. (36) we have, with constant b

ht�x�bi � ht�x�ib: �37�
To calculate this we must know the components of t�x�. Since t�x� is a unit directional vector tangential to
a dislocation line which can point in any direction, we can specify t�x� in terms of its components

�t1; t2; t3� � �sin # cos u ; sin # sin u ; cos #�; �38�
where # and u are spherical coordinates.

Of course, we shall never know the values of #;u at all points in the specimen. This implies that we never
shall know the microscopic dislocation distribution in the medium, except when we prescribe it in some
model picture. Nevertheless, one important result can be established without calculation. If the network is
macroscopically isotropic and homogeneous, then the components t1, t2 and t3 of t will be equal in the
average. Herefrom, it follows that in this case hti � 0, the macroscopic dislocation value in zero. A similar
situation was mentioned already in Section 5.

The ®ndings of the last paragraph constitute a rigorous, but not very helpful partial solution of our
problem. Another, maybe a bit more useful solution will be described now.

8. Correlation functions

For the next consideration we need an important concept of statistical physics, namely the concept of
correlation function. We assume that this concept is not completely strange to the reader. Therefore, we
shall keep short the explanations referring to this. The tests relevant to the concept are an extension of the
tests introduced in the last section. Instead of making measurements at one point x (or x1) in all members of
the ensemble, we now make simultaneous measurements at two points, multiply the outcomes in each
member and take the ensemble average. We obtain for a random variable f �x�, say

hf �x1�f �x2�i � hf �x1�f �x1 � Dx�i; Dx � x2 ÿ x1: �39�
This result is a macroscopic function of x1 and x2, and can also be written in the form:Z

f1f2P2�f1; f2�df1 df2: �40�

Here P2 is the two-point probability density. P2 df1 df2 is the probability for ®nding f in the range df1

around f1 and simultaneously in df2 around f2, when performing the mentioned test. Expressions (39) and
(40), whose identity we shall not prove here, are known as two-point correlation functions.

In an analogous way, one may de®ne three-point, four-point etc. generally q-point correlation functions.
The three-point function is for instance

hf �x1�f �x2�f �x3�i; or

Z
f1f2f3P3�f1; f2; f3�df1 df2 df3; �41�

and the correlation functions of higher order read correspondingly. They all together establish the complete
(in®nite) set of correlation functions if, for reason of convenience, we declare the function hf1i as the one-
point correlation function. The great importance of the correlation functions rests on the following two
properties. (i) Since the correlation functions connect points such as �x1; x2�; �x1;x2; x3� etc. of the en-
semble, they play a distinguished role in theories of the interaction of particles, defects, etc. (ii) The full set
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of correlation functions (including that for q � 1) gives the complete macroscopic information for the
random variable in question, if certain criteria for convergence are ful®lled. This result is a consequence of
the fact that by de®nition all correlation functions are also ensemble averages. The complete macroscopic
information is less than the microscopic one which gives the value of the random variable at each point in
the real specimen in a deterministic way.

Note that in the present investigation, we restrict ourselves to two scales, namely microscopic and
macroscopic. In many practical problems, more than two scales must be regarded, and then the situation
becomes much more involved. As an example consider polycrystalline aggregates, in which traditionally
one distinguishes between three scales for the stresses, the stresses of the ®rst, second and third kind. The
®rst of these stresses is the macroscopic one, the second one that of the grains and the third one relates to
microscopic ¯uctuations as caused by dislocations and other defects. If we deal with single crystals rather
than with polycrystals, then the stresses of second kind are absent. This is the case of the two-scale statistics,
which we shall treat furthermore.

We now discuss the role of the two-point correlation function in the dislocation description. As before,
our random variable will be t�x�b. Then, according to the previous de®nition, the two-point correlation
function is

hti�x1�bjtk�x2�bli; �42�
where again we take b as a constant vector. t is de®ned as in Section 6. As a fourth rank tensor which relates
to two points (x1 and x2) Eq. (42) is a complicated object. We simplify our task by considering only a scalar
part of Eq. (42), i.e. a part which is invariant with respect to the coordinate transformation. This is the so-
called autocorrelation function

hti�x�bjti�x�bji � b2hti�x�ti�x�i � b2ht2�x�i; �43�
where b � jbj and t � jtj.

According to the de®nition of the ensemble average, we have

ht2�x�i � lim
N!1

X
N

1

N
t2�x�: �44�

Now, t2�x� � 1 because t is a unit vector. The sum in Eq. (44) goes over the members of the ensemble.
Depending on whether a dislocation passes through the point x of an ensemble member or no dislocation is
at x, the contribution of the member to the sum is 1 or 0. Let n denote the number of positive events in the
sum over the members, then the sum is equal to n and the chosen invariant of the two-point correlation
function becomes

�n=N�b2; �45�
where for practical purposes N needs not to be in®nity, but should be large so that the averaging has a
meaning. Note that n in Eq. (45) depends on the chosen size of N, so that for large N, Eq. (45) does
practically not depend on N.

Obviously, n=N is the probability of ®nding that a dislocation goes through some point x. If the dis-
tribution of dislocations is macroscopically homogeneous, then n=N is the same for each x.

In the derivation of Eq. (45) we have utilized the ensemble theory. It is also possible, and for the in-
terpretation perhaps useful, to work with the volume averages. For convenience we divide the specimen
into a great number M of atomic cells of size b3. If m is the number of cells met by a dislocation and �l is the
average length within a cell of such a dislocation, then obviously the total length of all dislocations in a
volume of size Mb3 is

L � m�l: �46�
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Since the volume average equals ensemble average, the invariant part of the two-point correlation function
can be written as

k0 � ti�x�bjti�x�bj � 1

Mb3

X
cells

t2

 !
b5 � 1

Mb3
mb5 � �m=M�b2; �47�

very close to Eq. (45). Inserting m from here into Eq. (46) we obtain

L � M �lk0=b2: �48�
This is the total length of all dislocations in the volume Mb3. Since M ; �l; b do not change during the ex-
periment, we ®nd that L is given essentially by the autocorrelation function k0 of the dislocation distri-
bution. This result is remarkable, because L is heuristically found, long used measure of the dislocation
state. It represents a state quantity in the sense of thermodynamics since it can be measured, e.g. by electron
microscope, without knowing anything about the past of the specimen.

L, often also named q, is frequently used in theories with dislocations. It is a convenient measure of the
dislocation density. Its increase under deformation implies the densi®cation of the dislocation network. But
as a single scalar function it is of course a very modest description of the network. In fact, a complete
(macroscopic) description would require not a single correlation function, but the whole set of correlation
functions of the order q � 1 to 1. This means that the number of internal variables of such a medium is
in®nite, in a strict sense, as surmised early by Drucker (1960).

Of course, nobody likes to handle an in®nite number of variables. Fortunately, experience with statistical
physics tells us that in normal situations the signi®cance of the correlation functions decreases with in-
creasing order, so that for many problems it should su�ce to include correlation functions upto the order of
2, 3 or 4.

Physicists are used to deal with complex statistical problems and have developed sophisticated methods
for this. In particular, correlation functions are introduced in many disciplines of physics. Their value rests
not only on their theoretical treatability, but also on their experimental accessibility.

9. Micro- and macrodescription

So far we have discussed a microscopic and a macroscopic picture of the dislocation state. In the mi-
croscopic picture the dislocation state is described deterministically and completely by the values of tb over
the whole specimen. In the macroscopic picture, ensemble averages which are used in a systematic way give
®ner and ®ner details about the macroscopic dislocation distribution. The outstanding tool for this is found
in the concept of dislocation correlation functions of order 1 to 1. Both tb and the correlation functions
are state variables in the sense of general thermodynamics because they permit measurements without any
knowledge of the past.

Both tb in the microtheory and the q-point correlation functions, say kq �q � 1 . . .1� in the macrotheory
play the role of dynamical variables in the two theories, and the kq are ensemble averages. At the same time,
they are independent variables to be used in the energy expression if one wants to develop a dynamical
theory. To this end, several researchers have proposed the Lagrange formalism, but encountered various
di�culties. I mention recent work of Maugin (1993), Naghdi and Srinivasa (1993, 1994), Le and Stumpf
(1994), Anthony et al. (1998) and Anthony and Azirhi (1998). Most serious is perhaps that the Lagrange
formalism was not invented to treat problems with dissipation. Maybe a proposal of Anthony might help
here. Anthony et al. (1998) and Anthony and Azirhi (1998), introduce complex ®elds instead of the real
physical ®elds, for instance w for T, the temperature, where w has some analogies to the complex
Schr�odinger w-function. It is perhaps too early to give a ®nal judgement for this proposal.
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The other great problem consists in the necessity for a good description of the dislocation state. In the
microscopic approach we have tb. But only when this is simple enough, e.g. for straight dislocations, will a
solution be possible. This is in fact the reason why we try to develop a macroscopic theory. Such a theory is
certainly simpler than the deterministic (microscopic) theory, but still too complex as to do something
useful with it. Except perhaps, if one omits the correlation functions of higher order and satis®es oneself
with the remaining functions, e.g. k1; k2. A step to a better description was done by Anthony who, as others,
proposes to describe the (macroscopic) dislocation state by giving separate numbers for each type of glide
system, e.g. 12 numbers L1±L12 which represent the total lengths of dislocations in the unit volume, but now
per glide system. Unfortunately, already in this case, where the description of the dislocation state is still
rather poor, results a quite involved calculation.

Today, statistical problems are often solved by numerical methods. Under certain presuppositions it
then su�ces to make a calculation with only one realization (member) of the ensemble. The number of
included points with tb should then be very large. For instance when developing such an algorithm one
could methodologically pro®t a lot from the molecular dynamics. A speci®c di�culty however will remain,
namely that the tb's have to connect themselves along lines that do not end in the interior of the body. This
problem requires a theory for itself.

10. The response problem

In the (linearized) theory of elasticity the potential energy density W is a function, in more complex
situations (e.g. nonlocal theory) a functional, of the elastic distortion

W � W �be
ij�: �49�

A more complex situation prevails also when we introduce the dislocation density a � curlb, as in Section
5. The form of a suggests that we use, in addition to b, also curlb as independent variable in W. A linearized
theory results when W is quadratic in the independent variables. That means we use

W � Ab2 � B�curlb�2; �50�
where A;B are constant material tensors. For simplicity we have omitted a term mixed in b and curlb. In the
following coarse estimate we assume that A and B are of the similar order of the magnitude. Comparing
the dimensions, we note that b is dimensionless and curlb has the dimension 1=length. This means that the
second energy term in Eq. (50) contains a factor 1=l2 when compared with the ®rst one. This factor is
related to the distance between dislocations which in typical cases is of the order 10ÿ4 cm. So the second
energy term contains a quantity of the order 10ÿ8 cm2 that is very small on the macroscale. For this reason
the dislocation term in Eq. (50) is usually omitted. However, the reality of dislocations in plastically de-
formed solids is di�erent. Due to their strong far-reaching interactions, dislocations form particular locally
varying low energy arrangements so that the ®rst part of the energy decreases distinctly. The two energy
terms then become of the same order of magnitude so that none of them may be neglected.

Response quantities are usually de®ned as the variational derivatives of the energy density W with re-
spect to the independent variables. In our case,

rij � dW =dbij; sij � dW =d�curlb�ij: �51�
Obviously, sij, the speci®c response to a dislocation density, has the dimension of a moment stress.

We had argued before that in the macroscopic theory, the tensor a of dislocation density misses an
essential part of the dislocation distribution. Therefore, also the response quantities as de®ned in Eq. (50)
will be incomplete when Eq. (50) is understood as macroscopic. To obtain a more complete description of
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the macroresponse, here we can also introduce the correlation functions this time on the stress side of the
theory.

If Eq. (50) is interpreted as equation of the microscopic theory in the deterministic approach, then b and
a represent completely the geometric (or kinematic) degrees of freedom. Then also r and s are a complete
description of the static response. s will be zero where a � 0, that means, s will be nonzero only along the
delta lines of the dislocations. This is an exact statement for our model with delta function. Of course, this
picture is not consistent with the real world, namely that our crystals possess a smallest, but ®nite length,
the lattice parameter. This fact was taken into account by Peierls (1940) who was able, by a nonlinear
model, to calculate the dislocation core. In our context, it is remarkable that the theory of Peierls contains a
moment stress as the response quantity (Kr�oner, 1992). This supports our ®nding that moment stress is the
speci®c response to the presence of a dislocation density. This fact establishes a certain proximity between
dislocation theory and the theory of Cosserat media, and this has been investigated by various authors, e.g.
Epstein and de Le�on (1994, 1995). Not everything is clear, however.

11. Conclusion

In our presentation of the continuous theory of dislocations, we have discussed problems that must be
kept in the mind of those who are up to the development of a theory that permits macroscopic applications
in the ®eld of elastoplasticity of solids. We have restricted ourselves to the deformation of crystalline solids,
a ®eld which in itself is huge so that many problems had to be omitted.

Elastoplastic deformation has an immense potential for practical applications. In this respect, it can be
compared with the theory of electromagnetism. Here, one knows that all electromagnetic phenomena have
to ®t into the frame of Maxwell's equations. It is then suggestive to look for a set of equations that have to
be obeyed in all processes of elastoplastic deformation. These equations could be comprised under the name
elastoplastodynamics. We know, however, that the elastoplastic deformation proceeds by the motion of
defects, essentially dislocations, so that also dislocation dynamics would be a good name. Since the be-
haviour of crystalline matter is determined by many defects, one may also speak of a many-defect theory, in
analogy to many-particle or many-body theories in other parts of physics.

When developing a dynamical theory it is important from the beginning to specify the degrees of
freedom of the considered physical system. In a way, this then de®nes the problem that one is going to treat.
In our case, we know that dislocations play a decisive role in the elastoplastic deformation of crystalline
bodies. We also know that the distribution of the dislocations has a great in¯uence on the state of the
medium. This implies that it is possible to introduce certain dislocation-related quantities as state variable
beside the elastic strain. The question is whether this leads to a complete representation of the state on the
geometrical, or kinematical, side. We have seen that this is in fact possible. A closer inspection shows us,
however, that this is possible only under one condition, namely that no point defects migrate. Indeed, when
they do migrate they help to change the state of the body and, therefore, have to be included as (internal)
dynamical variables.

Contrary to the dislocations point defects move under thermal activation and therefore their motion is
restricted to higher temperature. Now, dislocations are able to move in glide planes, but also out of glide
planes, a motion known as climb. For topological reasons this motion is possible only if at the same time
point defects are created or annihilated. Hence, at higher temperature the system gains degrees of freedom,
namely those of the point defects. The situation is again similar to that of electrodynamics. At high energy
supply, the system gains the new degrees of freedom of the weak interaction. That means that electrody-
namics in itself is not a closed theory since it gains new degrees of freedom at high-energy supply.

In the mechanical analogue, high temperature implies high energy supply, and again this leads to new
degrees of freedom. That means that the pure dislocation theory of elastoplasticity is valid only at su�-
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ciently low temperature. Of course it has been attempted to introduce point defects into the theory, which,
however, does not become simpler in this way. Thus, we have omitted that.

Also omitted in this article is the dynamical part of the theory, because a convincing such theory does
not exist. There is some hope, however, that the so-called gauge ®eld theoretical approaches discussed at
late will bring progress for the dynamic theory of defects. Gauge theoretical methods have been most utile
in fundamental physical ®eld theories. The ®rst person who proposed to apply such methods to the defect
problem in solids seems to have been Turski (1966). For quick information to the reader, we give in the
following the titles of a few relevant papers or books on gauge theories: Variational principle for equilibrium
and incompatibility equations in dislocation theory (Turski, 1966), On the gauge transformation admitted by
the equations of defect dynamics (Golebiewska-Lasota and Edelen, 1979), A gauge theory of dislocations and
disclinations (Kadi�c et al., 1983), Gauge theory and defects in solids (Edelen and Lagoudas, 1988), Gauge
theories in mechanics (Kunin and Kunin, 1986), Gauge theories and densities of topological singularities
(Dzyaloshinskii and Volovick, 1980), Elastic behaviour of crystalline solids: A dynamic gauge model (Popov,
1994), Gauge ®elds in condensed matter (Kleinert, 1989).

In these works, the results of the older defect theories were widely con®rmed. Further work however is
needed to bring the dynamic theory in a good state. So far, solved problems of moving dislocations are
restricted essentially to single dislocations whose motion is prescribed. Wanted is then for instance to learn
about the radiation of sound waves from these dislocations. Typical problems of this kind were treated by
Callias and Markensco� (1988) e.g. on singular asymptotics of integrals and the near-®eld radiated from
nonuniformly moving dislocations (Callias and Markensco�, 1988). This has to do with the damping or
dissipation of moving dislocations and therefore deserves some attention also for elastoplastic deformation.
On the other hand, it is certainly remote from the dynamics of a dislocation network, which must include
creation and annihilation of dislocations. One of the great problems is obviously the development of
the dislocation state under the elastoplastic deformation. For instance, it is observed that under large
deformations the dislocations develop complex patterns on a mesoscale, i.e. between macro and micro
(Mughrabi et al., 1979; Walgraef and Aifantis, 1985; Woo and Frank, 1987). Typical are cell patterns,
ladder patterns and many others. A good theory should be able to predict such sequences of patterns that
have a great in¯uence on the properties of the material. For this problem, methods have been developed
which resemble those in the ®eld of synergetics, or self-organization or chaos.

Omitted is also the di�erential geometry of defects which was initiated independently by Kondo (1952)
and by Bilby et al. (1955) in the ®fties (also my own presentation of this topic Kr�oner (1981)). The great
®nding of these authors was that Cartan's circuit in di�erential geometry, by which Cartan de®ned the
torsion of a space, is just the continuum version of the discrete circuit de®ning the Burgers vector in crystal
physics. This cognition allows one to utilize the powerful complex mathematical formalism of di�erential
geometry also to dislocation problems. It is interesting to note that the di�erential geometry of a�nely
connected spaces is particularly adapted to describe crystalline materials. For this reason the gauge theories
of defects are often formulated in the language of di�erential geometry which also permits to draw anal-
ogies to fundamental physical ®eld theories like gravitation or cosmical string theories. For a recent
comprehensive survey on this see Hehl and coworkers (1995).

Unfortunately, the di�erential geometry of dislocations su�ers from the same shortcomings as does the
more conventional theory. Above all, Cartan's torsion tensor, identi®ed as the tensor of dislocation density,
is an average quantity only. Hence, the main impediment of the application of this formalism is again the
complexity of the internal mechanical state (the defect state). Nowadays, the part of di�erential geometry
which has to do with torsion (dislocations) is called Riemann±Cartan geometry. The general di�erential
geometry of a�nely connected spaces has in addition to Riemann±Cartan geometry the nonmetric degrees
of freedom. These again are fully adapted to describe point defects in crystalline matter, as was recognized
by Bilby et al. (1957). To understand this, note that the crystal is a perfectly metric body in which distances
are measured by counting atomic steps along the lattice lines. The presence of point defects, however,
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implies that when counting lattice steps one encounters, from time to time, a point defect which obviously
disturbs the counting, thus, the measurement of distances. This e�ect was made quantitative by Kr�oner
(1990).

Major part of this article was concerned with geometry or kinematics. However, there exists an inter-
esting development in statics which, in the sense of Hamilton's mechanics, is dual to the geometrical theory.
Originally, Schaefer (1953) established an analogy between the static part of elasticity theory and (linea-
rized) Riemannian geometry. Stojanovi�c (1963) and Kr�oner (1963) showed that this analogy continues
when moment stresses, as occur in dislocation theory, are introduced. Instead of the Riemann curvature
tensor one then needs the (linearized) Riemann±Cartan curvature tensor formed with the linear connection
containing torsion.

Ben-Abraham (1970) realized that the analogy goes much further, namely is valid also when point de-
fects are introduced, i.e. the geometry is built with a connection containing torsion and ``nonmetricity''.
Ben-Abraham found in particular that the statical equilibrium conditions of the theory with dislocations
and point defects have the form of the Bianchi identities of the general curvature tensor. This establishes a
new di�erential geometry on the statical side of the theory. Here the stress functions vij, considered in
Section 3 in a linearized form, play the role of the metric tensor. One realizes that in this formalism, the
geometry and the statics of the defect theory have the status of mutually dual formulations. The fact that all
this is valid for arbitrary large stress and strain was shown by Kr�oner (1987). Kleinert (1989) has utilized
the duality for the development of his so-called double gauge theory. He also proposed to take care of the
discreteness of real dislocations by some quantization procedure, an attractive thought.

In this article it was not our aim to develop a complete theory of the elastoplastic behaviour, in par-
ticular of crystalline matter. This would have been impossible because the ®nal, fully developed theory does
not exist. Instead, we wanted to show that the existing theory, on the bene®t side, permits the solution of
many important problems, in particular the treatment of the interaction of dislocations. A convenient tool
for this is the microscopic theory of dislocations (Section 5) which also acts as the basis for the later
treatment of dislocations as random variables.

We also wanted to show the obvious shortcomings of the present theory of elastoplasticity. The greatest
shortcoming is that the dislocation density tensor a, no matter whether introduced through di�erential
geometry or in the conventional way, measures the average dislocation density only and therefore, regards
the internal mechanical state utmost incompletely. In principle, this shortcoming could be overcome by
reorientation of dislocation theory towards a statistical theory, but only with highest expenditure of
computation. Is it worthwhile to try that?
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